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INTRODUCTION
In 1935, Einstein, Podolsky and Rosen (EPR) argued that the description of physical reality provided by quantum mechanics was

incomplete. They attempted to identity elements of reality that were not included in quantum mechanics. They theorised that it is
possible to predict with certainty, the value that the property will have, immediately before measurement. In 1965, an experimental
test was proposed by John Bell, which invalidated EPR’s argument. The CHSH inequality can be used in the proof of Bell’s
Theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden
variables. The inequality is a constraint on the statistics of “coincidences” in a Bell test, which is necessarily true if there exists
underlying local hidden variables. However, the constraint can be infringed by quantum mechanics, particularly, entanglement.

Violation of CHSH Inequality with 2 Qubits | Variational Quantum Eigensolver on Multiple Qubits
There are 2 possible CHSH inequalities: I VOE allows us to significantly reduce the number of measurements for 2 qubits.

[(CHSH1)| = [{AB)| + [(Ab)| — [{aB)| + [{ab)| < 2 Table 1: CHSH Operators for 2 Qubits

[(CHSH2)| = (AB)| — [{Ab)| + [(aB)| + [{ab)| < 2 Hamiltonian/CHSH Operator

where {A, a} and {B, b} are sets of orthogonal bases B —
measured by parties Alice and Bob respectively. 10)=101)  H; = V2 (0x®0x @0y + 57,805;@1)
11)=100)  H, = V2 (05 ®0x®ay — 7,@3,®I)

The maximum expectation of CHSH operator for a quantum
system is 2v/2 (Tsirelson’s bound). However, the violation of A, = V2 (—0x®0x + 0,Q0,) —2V2 |WF) = 715( 01) +110)  H; = V2 (—0xR0x R0y + 0,Q0,R1)
I/_14- — \/i (_O-X®O-X o O-Z®O-Z) _2\/5 (D-I—) — \/_15( OO) + 11)) ﬁ4 — \/-E (_O-X®O-X®O-X — 02@02@]1)

Table 2: CHSH Operators for 3 Qubits
Hamiltonian/CHSH Operator

Bell Inequality is a sufficient criterion for certifying
entanglement but not a necessary one.
The 4 circuits below will give the expectation values of AB,
Ab, aB and ab, for calculating the CHSH values.
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The VQE must run with at least 2 CHSH operators (H,&H,). The output with the lowest
eigenvalue Is the CHSH value we need. The 2 non-biseparable classes of 3-qubit states are
|GHZ) = %(lOOO) +|111)) and |W) = %(IOOl) + 1010) + |100)).
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Fig 3.1: Variational Quantum Circuit (GHZ-state)
Fig 4.1: |GHZ>=-1(/000 > +[111>)

Fig 3.2: Variational Quantum Circuit (W-state)
Fig 4.2: [W>=1(]001> +]010 > +|100 >)
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Fig 4.4: |W> for ©[0] =3r rad

6 Fig 4.3: |GHZ> for ©[0] =0 rad
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Fig 4: Simulated Results for CHSH Eigenvalue using H; for 3-qubit |GHZ) and |W) States
Note the minimum eigenvalue obtained for the W-state Is only = —2.357, as it Is not an

eigenstate of any of the above 4 Hamiltonians. It is difficult, if not impossible, to construct
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Fig 2: Simulated Results for (CHSH1) with Different Bell States
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the Hamiltonian for which the W-state Is an eigenstate of.

Limitations of VQE Method on 3 or More Qubits

VQE Is unable to distinguish between bi-separable and genuinely n-qubit entangled pure
states. The output eigenvalue is a measure of how strongly entangled any pair of qubits
are In the ansatz, and will be < —2 as long as there is sufficient entanglement between
any pair. For example, both |GHZ), a genuinely entangled pure state, and |¢) = |[®1)®|0),

a 3-qubit bi-separable state, will output eigenvalue of —2+/2.
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Operator Generalisation for Multiple Qubits

The Hamiltonian / CHSH operator can be generalised for any
n-qubit GHZ state. When n Is odd, n-qubit GHZ states Is the

eigenstate, with eigenvalue 2+/2, of the operator:
ﬁl — \/i (O‘X ® O'X ® ®0')?th -|— O'Z ® O'Z ® ® O'Z(n_l)th ® ) In fUture, SUCh eXperImeﬂtS Sha” be COndUCted on real . Zzia%izgtnglzf:argn;ation(10”‘anniversaryedition).

When n is even, the operator takes the form: = guantum devices which are far from the ideal simulations IN  huesy/aiskit.ore/documentationtutorials/algorithms/04

H, =+2 (O’X Roy®..Qc " +0,®0,R..8 az(n_l)th X O'Z)

References
Future Work * Local Reality and the CHSH Inequality from Qiskit Textbook

https://qiskit.org/textbook/ch-demos/chsh.html
* Nielsen, M. A., & Chuang, I. (2010). Quantum Computation

inequalities for three-qubit pure states. Physics Letters A,

this project. Gate fidelity and noise factors are SOme - o a, batta ¢, &Agrawal, P. (2017). New Bel
4 challenges to overcome as we try to reproduce ideal results. 3814735283033

www.ntu.edu.sg


https://qiskit.org/textbook/ch-demos/chsh.html
https://qiskit.org/documentation/tutorials/algorithms/04_vqe_advanced.html

