
Bell’s Theorem and Quantum Variational Methods

www.ntu.edu.sg

Lim Yu Jie

Supervised by Assoc Prof Rainer Helmut Dumke, Mentored by Tan Yuanzheng Paul 

Odyssey Research Programme

School of Physical and Mathematical Sciences

INTRODUCTION
In 1935, Einstein, Podolsky and Rosen (EPR) argued that the description of physical reality provided by quantum mechanics was
incomplete. They attempted to identify elements of reality that were not included in quantum mechanics. They theorised that it is
possible to predict with certainty, the value that the property will have, immediately before measurement. In 1965, an experimental
test was proposed by John Bell, which invalidated EPR’s argument. The CHSH inequality can be used in the proof of Bell’s
Theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden
variables. The inequality is a constraint on the statistics of “coincidences” in a Bell test, which is necessarily true if there exists
underlying local hidden variables. However, the constraint can be infringed by quantum mechanics, particularly, entanglement.

Violation of  CHSH Inequality with 2 Qubits
There are 2 possible CHSH inequalities:
𝐶𝐻𝑆𝐻1 = 𝐴𝐵 + 𝐴𝑏 − 𝑎𝐵 + 𝑎𝑏 ≤ 2
𝐶𝐻𝑆𝐻2 = 𝐴𝐵 − 𝐴𝑏 + 𝑎𝐵 + 𝑎𝑏 ≤ 2

where {𝐴 , 𝑎 } and {𝐵 , 𝑏 } are sets of orthogonal bases

measured by parties Alice and Bob respectively.

The maximum expectation of CHSH operator for a quantum

system is 2 2 (Tsirelson’s bound). However, the violation of

Bell inequality is a sufficient criterion for certifying

entanglement but not a necessary one.

The 4 circuits below will give the expectation values of 𝐴𝐵,

𝐴𝑏, 𝑎𝐵 and 𝑎𝑏, for calculating the CHSH values.

State creation Bases Selection Measurement

Fig 1.1: 
Circuit 1 
for 𝑨𝑩

Operator Generalisation for Multiple Qubits

Variational Quantum Eigensolver on Multiple Qubits
VQE allows us to significantly reduce the number of measurements for 2 qubits.

Hamiltonian/CHSH Operator 𝝀 Ԧ𝜈

Η1 = 2 𝜎𝑋⨂𝜎𝑋 + 𝜎𝑍⨂𝜎𝑍 −2 2 ȁ ۧΨ− = 1

2
ȁ ۧ10 − ȁ ۧ01

Η2 = 2 𝜎𝑋⨂𝜎𝑋 − 𝜎𝑍⨂𝜎𝑍 −2 2 ȁ ۧΦ− = 1

2
ȁ ۧ11 − ȁ ۧ00

Η3 = 2 −𝜎𝑋⨂𝜎𝑋 + 𝜎𝑍⨂𝜎𝑍 −2 2 ȁ ۧΨ+ = 1

2
ȁ ۧ01 + ȁ ۧ10

Η4 = 2 −𝜎𝑋⨂𝜎𝑋 − 𝜎𝑍⨂𝜎𝑍 −2 2 ȁ ۧΦ+ = 1

2
ȁ ۧ00 + ȁ ۧ11

Limitations of  VQE Method on 3 or More Qubits
VQE is unable to distinguish between bi-separable and genuinely n-qubit entangled pure

states. The output eigenvalue is a measure of how strongly entangled any pair of qubits

are in the ansatz, and will be < −2 as long as there is sufficient entanglement between

any pair. For example, both ȁ ۧ𝐺𝐻𝑍 , a genuinely entangled pure state, and ȁ ۧ𝜓 = ȁ ۧΦ+ ⨂ȁ ۧ0 ,

a 3-qubit bi-separable state, will output eigenvalue of −2 2.
The Hamiltonian / CHSH operator can be generalised for any

n-qubit GHZ state. When n is odd, n-qubit GHZ states is the

eigenstate, with eigenvalue 2 2, of the operator:

Η1 = 2 𝜎𝑋⨂𝜎𝑋⨂…⨂𝜎𝑋
𝑛𝑡ℎ + 𝜎𝑍⨂𝜎𝑍⨂…⨂𝜎𝑍

𝑛−1 𝑡ℎ
⨂𝕀

When n is even, the operator takes the form:

Η1 = 2 𝜎𝑋⨂𝜎𝑋⨂…⨂𝜎𝑋
𝑛𝑡ℎ + 𝜎𝑍⨂𝜎𝑍⨂…⨂𝜎𝑍

𝑛−1 𝑡ℎ
⨂𝜎𝑍

The VQE must run with at least 2 CHSH operators (Η1&Η2). The output with the lowest

eigenvalue is the CHSH value we need. The 2 non-biseparable classes of 3-qubit states are
ȁ ۧ𝐺𝐻𝑍 = 1

2
ȁ0 ۧ00 + ȁ ۧ111 and ȁ ۧ𝑊 = 1

3
ȁ0 ۧ01 + ȁ ۧ010 + ȁ ۧ100 .

Table 1: CHSH Operators for 2 Qubits

Fig 1.2: 
Circuit 2 
for 𝑨𝒃

Fig 1.3: 
Circuit 3 
for 𝒂𝑩

Fig 1.4: 
Circuit 4 
for 𝒂𝒃

Fig 2: Simulated Results for 𝑪𝑯𝑺𝑯𝟏 with Different Bell States

Hamiltonian/CHSH Operator

Η1 = 2 𝜎𝑋⨂𝜎𝑋⨂𝜎𝑋 + 𝜎𝑍⨂𝜎𝑍⨂𝕀

Η2 = 2 𝜎𝑋⨂𝜎𝑋⨂𝜎𝑋 − 𝜎𝑍⨂𝜎𝑍⨂𝕀

Η3 = 2 −𝜎𝑋⨂𝜎𝑋⨂𝜎𝑋 + 𝜎𝑍⨂𝜎𝑍⨂𝕀

Η4 = 2 −𝜎𝑋⨂𝜎𝑋⨂𝜎𝑋 − 𝜎𝑍⨂𝜎𝑍⨂𝕀

Table 2: CHSH Operators for 3 Qubits

Note the minimum eigenvalue obtained for the W-state is only ≈ −2.357, as it is not an

eigenstate of any of the above 4 Hamiltonians. It is difficult, if not impossible, to construct

the Hamiltonian for which the W-state is an eigenstate of.

Fig 3.1: Variational Quantum Circuit (GHZ-state) Fig 3.2: Variational Quantum Circuit (W-state)

Fig 4: Simulated Results for CHSH Eigenvalue using 𝚮𝟏 for 3-qubit ȁ ۧ𝑮𝑯𝒁 and ȁ ۧ𝑾 States

Future Work
In future, such experiments shall be conducted on real

quantum devices which are far from the ideal simulations in

this project. Gate fidelity and noise factors are some

challenges to overcome as we try to reproduce ideal results.
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